Davisco Whey Protein Processing

Lloyd Metzger
Director, Midwest Dairy Foods Research Center
Professor and Alfred Chair in Dairy Education
South Dakota State University
What is whey?

By product of cheese making?
Approximate composition of whey

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>93.5</td>
</tr>
<tr>
<td>Lactose</td>
<td>4.9</td>
</tr>
<tr>
<td>Protein</td>
<td>0.8</td>
</tr>
<tr>
<td>Minerals</td>
<td>0.5</td>
</tr>
<tr>
<td>Fat</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- Primarily water and lactose
- To produce whey protein isolate the whey protein is separated from the other components using filtration or ion exchange based processes
Whey pre-treatments

Cheese manufacture

- whey
- Fines removal
- Fat separation
- Bleaching
- Pasteurization

cheese
Cheese fines
Whey cream
(optional – applied to colored whey)
WPI production utilizes two primary separation technologies

Membrane Filtration
- Separation of non-protein components and concentration
- Primarily based on molecular weight/size
- Advanced filtration technology can further optimize selectivity through charged membranes
- Most cost effective up to 80-90% protein contents

Ion-Exchange
- Isolation of whey proteins through charge-affinity to custom resins
- Best for high purity, low denaturation fractions
Spiral wound membranes
Complete filtration system
Types of filtration

- **Bacteria**: 0.1 - 10.0 µ
- **Fat**: 0.01 - 0.1 µ
- **Protein**: 0.001 - 0.01 µ
- **Lactose**: <0.001 µ
- ** Minerals**: 0.001 - 0.01 µ
- **Water**: <0.001 µ

Molecular Weight Cut-Off (Daltons):
- Bacteria: 1,000,000 Daltons
- Fat: 10,000 Daltons
- Protein: 1,000 Daltons
- Lactose: 50 Daltons
- Minerals: 50 Daltons
- Water: 50 Daltons

Operating Pressure (PSI):
- Bacteria: 5-30 PSI
- Fat: 15-150 PSI
- Protein: 100-500 PSI
- Lactose: 250-1500 PSI
- Minerals: 250-1500 PSI
- Water: 250-1500 PSI
Ultrafiltration
Microfiltration

Water, Lactose, Whey Protein -> Fat, Aggregated Protein

Flow Direction

Retentate

Membrane

Permeate
WPI - filtration based

Whey → Ultrafiltration → retentate → microfiltration → permeate → permeate → Ultrafiltration → retentate

Whey protein isolate → retentate

Water (dia-filtration)
Ion-exchange

Negatively Charged Analyte [Anion] (Attracted to Positive Surface)

Positively Charged Analyte [Cation] (Attracted to Negative Surface)
WPI - ion-exchange

Step 1 - binding
whey

Unbound components

Step 2 - elution
salt or pH adjustment

Elution of bound components
WPI - ion-exchange

Step: 3 – ultrafiltration of eluent

eluent

Ultrafiltration

Retentate (pure whey protein)

Permeate (salts)
Whey protein fractions

Whey protein nomenclature and relative amounts

- Raw whey only contains about .8% protein
- Most abundant protein is β-lactoglobulin

<table>
<thead>
<tr>
<th>Fraction</th>
<th>% of protein in whey</th>
</tr>
</thead>
<tbody>
<tr>
<td>β - Lactoglobulin</td>
<td>50</td>
</tr>
<tr>
<td>α - Lactalbumin</td>
<td>25</td>
</tr>
<tr>
<td>Glyco-macro-peptide (GMP)</td>
<td>16</td>
</tr>
<tr>
<td>Blood serum albumin</td>
<td>5</td>
</tr>
<tr>
<td>lactoperoxidase</td>
<td>trace</td>
</tr>
<tr>
<td>Lactotransferrin</td>
<td>trace</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>trace</td>
</tr>
</tbody>
</table>
Major whey protein fractions

\(\beta\)-lactoglobulin

- Major whey protein (50% of total whey protein)
- 162 a.a., 2 disulfide bonds and one free cysteine, high in branched chain amino acids
- Often blamed for allergic reactions (not present in human milk)
- Undergoes pH dependent self association reactions
- Susceptible to thermal denaturation above 65°C at pH6.7 – caused by exposure of free cysteine
- Binds retinol (vitamin A) – may be involved in Vit A transport to young
- Excellent emulsification, foaming, and gelation properties

- Molecular segments and structure
 - Eight strands of \(\beta\)-sheet that form a \(\beta\)-barrel with the shape of a flattened cone (interior is hydrophobic, but the opening is lined with hydrophilic a.a)
 - Disulfide bonds – one bridge between strands G and H (cys 106 and 109) and one joins flexible loop to the c-terminus (cys 66-160)
 - Free cysteine is buried in the interior
Whey proteins – β-lactoglobulin

Adapted from Food Prot. Applic. – Cayot and Lorient 225-256
Major whey protein fractions

α-lactalbumin

- 25% of total whey protein
- 123 a.a., 4 disulfide bonds and no free cysteine groups
- Very similar to egg white lysozyme
- Necessary for synthesis of lactose
- High affinity for calcium and other metal ions (released below pH 4)
- Heat denatured above 62°C
- Complex of α-lactalbumin and oleic acid causes tumor cells to self destruct (may be critical in infant health and disease prevention)
- Moderate foaming and emulsification properties, synergistic gelation with β-lactoglobulin
- Molecular segments and structure
 - Ellipsoid shape with a deep cleft, calcium binding site is bridged by disulfide bond (73-91) deep in the cleft – functions to stabilize against thermal denaturation
Whey proteins – α-lactalbumin

Adapted from Crit. Rev. Food Sci. – 1996, Wong et al. 807-844
Membrane based as compared to ion exchange

- Membrane based WPI contains 18-20% glyco-macro peptide (a protein fragment from casein)
- Ion exchange based WPI primarily contains β-lactoglobulin and α-lactalbuimin

This difference in protein fractions results in important nutritional and functional differences

- Amino acid profile
- Solubility, heat stability, gelation, foaming
Specifications

♦ Compositional based – protein, fat, minerals
 - Fat and mineral content will have an impact on performance (fat is critical for clarity and mineral contact impacts gelation and heat stability)

♦ Performance based – solubility, viscosity, clarity, heat stability, gel strength, foam overrun and foam stability, water holding capacity
 - All of these properties are influenced by pH, ionic strength, and thermal treatment
 - Pay close attention to the details of the testing methods when comparing products from different companies

♦ Instantized versions are available
α-lactalbumin isolate

Major whey proteins: Physico-chemical characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>α - La</th>
<th>β - Lg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoelec. pH</td>
<td>4.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Mol. Wt, kD</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Conc. In whey, g/L</td>
<td>1.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- β – Lg occurs in dimer form with a mol. wt of 36 kD at pH 5.5 to 7.5
- Octomer with 144 kD at pH 3.5 to 5.2
A variety of \(\alpha \)-La enriched products that have a wide range in purity are available.

Why is the market for \(\alpha \)-La enriched products growing?

- Infant formula
- Whey protein based therapeutic formula
- Stress reduction products (tryptophan:LNAA)
- Nutraceuticals applications
- Nutritional supplements
Membrane separation
- Options for low to intermediate purity products

Precipitation
- Intermediate purity products

Ion Exchange
- Only process that produces a highly pure product
Davisco α-lactalbumin isolate

- Proprietary production process

- True α-lactalbumin isolate in its native form containing >90% α-lactalbumin

- Other products are referred to as α-lactalbumin enriched and contain less than 65% α-lactalbumin
Questions?